Genomic and Proteomic Analyses of the Fungus Arthrobotrys oligospora Provide Insights into Nematode-Trap Formation

نویسندگان

  • Jinkui Yang
  • Lei Wang
  • Xinglai Ji
  • Yun Feng
  • Xiaomin Li
  • Chenggang Zou
  • Jianping Xu
  • Yan Ren
  • Qili Mi
  • Junli Wu
  • Shuqun Liu
  • Yu Liu
  • Xiaowei Huang
  • Haiyan Wang
  • Xuemei Niu
  • Juan Li
  • Lianming Liang
  • Yanlu Luo
  • Kaifang Ji
  • Wei Zhou
  • Zefen Yu
  • Guohong Li
  • Yajun Liu
  • Lei Li
  • Min Qiao
  • Lu Feng
  • Ke-Qin Zhang
چکیده

Nematode-trapping fungi are "carnivorous" and attack their hosts using specialized trapping devices. The morphological development of these traps is the key indicator of their switch from saprophytic to predacious lifestyles. Here, the genome of the nematode-trapping fungus Arthrobotrys oligospora Fres. (ATCC24927) was reported. The genome contains 40.07 Mb assembled sequence with 11,479 predicted genes. Comparative analysis showed that A. oligospora shared many more genes with pathogenic fungi than with non-pathogenic fungi. Specifically, compared to several sequenced ascomycete fungi, the A. oligospora genome has a larger number of pathogenicity-related genes in the subtilisin, cellulase, cellobiohydrolase, and pectinesterase gene families. Searching against the pathogen-host interaction gene database identified 398 homologous genes involved in pathogenicity in other fungi. The analysis of repetitive sequences provided evidence for repeat-induced point mutations in A. oligospora. Proteomic and quantitative PCR (qPCR) analyses revealed that 90 genes were significantly up-regulated at the early stage of trap-formation by nematode extracts and most of these genes were involved in translation, amino acid metabolism, carbohydrate metabolism, cell wall and membrane biogenesis. Based on the combined genomic, proteomic and qPCR data, a model for the formation of nematode trapping device in this fungus was proposed. In this model, multiple fungal signal transduction pathways are activated by its nematode prey to further regulate downstream genes associated with diverse cellular processes such as energy metabolism, biosynthesis of the cell wall and adhesive proteins, cell division, glycerol accumulation and peroxisome biogenesis. This study will facilitate the identification of pathogenicity-related genes and provide a broad foundation for understanding the molecular and evolutionary mechanisms underlying fungi-nematodes interactions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Screening of Soil and Sheep Faecal Samples for Predacious Fungi: Isolation and Characterization of the Nematode-Trapping Fungus Arthrobotrys oligospora

Over one-year period, 150 pasture soil samples and 138 sheep faecal samples, collected from different parts of Iran were screened for the presence of nematophagous fungi. The samples were cultured at 25ºC on chloramphenicol-2% water agar (CHF-WA) plates in the presence of Haemonchus contortus third stage larvae (L3) and checked over a two-month period for characteristic conidia, conidiophores a...

متن کامل

Genetic diversity and recombination in natural populations of the nematode-trapping fungus Arthrobotrys oligospora from China

Nematophagous fungi can trap and capture nematodes and other small invertebrates. This unique ability has made them ideal organisms from which to develop biological control agents against plant- and animal-parasitic nematodes. However, effective application of biocontrol agents in the field requires a comprehensive understanding about the ecology and population genetics of the nematophagous fun...

متن کامل

Bacteria can mobilize nematode-trapping fungi to kill nematodes

In their natural habitat, bacteria are consumed by bacterivorous nematodes; however, they are not simply passive preys. Here we report a defensive mechanism used by certain bacteria to mobilize nematode-trapping fungi to kill nematodes. These bacteria release urea, which triggers a lifestyle switch in the fungus Arthrobotrys oligospora from saprophytic to nematode-predatory form; this predaciou...

متن کامل

Nematophagous fungus Arthrobotrys oligospora mimics olfactory cues of sex and food to lure its nematode prey

To study the molecular basis for predator-prey coevolution, we investigated how Caenorhabditis elegans responds to the predatory fungus Arthrobotrys oligospora. C. elegans and other nematodes were attracted to volatile compounds produced by A. oligospora. Gas-chromatographic mass-spectral analyses of A. oligospora-derived volatile metabolites identified several odors mimicking food cues attract...

متن کامل

Morphological Variations in Conidia of Arthrobotrys oligospora on Different Media

Most commonly occurring predacious fungus Arthrobotrys oligospora showed great variation in size and shape of conidia on some media. The formation of larger conidia was recorded on beef extract and nutrient agar media. The length of conidia in Richard's YPSS, Sabouraud's, PDA and corn meal agar media was of medium size while smaller conidia were produced on Czapek's, Jensen's, Martin's medium. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2011